

High performing DLC coatings by means of Pulsed Plasma Deposition System

Organic Spintronics S.r.l. – BOLOGNA www.organic-spintronics.com

valeria.sanginario@organic-spintronics.com

Company overview

2003

Established Location Production

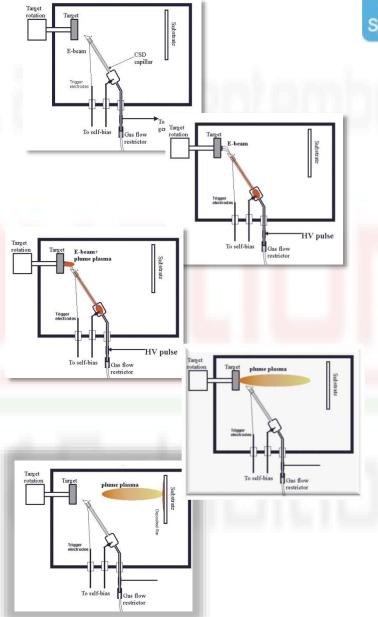
R&D Vision Via Gobetti 101, Bologna, Italy

Organic Spintronics

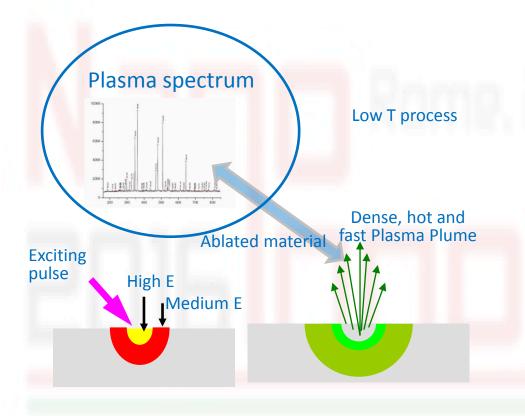
Thin film deposition equipments, PPD sources, and laboratory deposition equipments and accessories. Industrial deposition equipments
 Development of novel PPD deposition sources and processes
 Transfer the PPD breakthrough innovation to the industry

Founder: Prof. Carlo Taliani Experience: 40yr+ (1945-2015)

- 10100 citations; h index 40 (Thomson Reuter 11/2015)
- Expertise: nanoscience, nanotechnology, thin film deposition, organic electronics, spintronics and hybrid electronics



Organic Spintronics takes advantage of the scientific and technical **excellence** of the **Bologna CNR Area** and it is connected with many **High Technology Technopoles** of ER region.


PPD Working Principle and advantages:

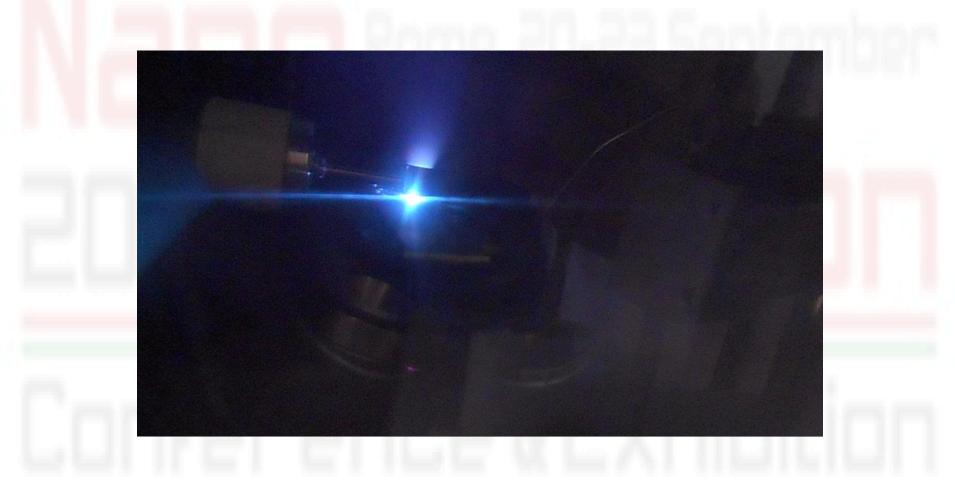
- High-voltage difference (up to 20kV) and high energy density start the electron beam to ablate the target.
- High current density (up to 20 KA/cm²) and gas generate a dense (up to 10¹⁷ cm⁻³) and highly ionized plume.
- The plume propagates toward the substrate.
 The plasma density decreases with the distance (<10¹⁴ cm⁻³ at few cm distance) from the target. The plasma species are ballistic.
- The thin film is formed once the plume species impact on the substrate.
- Because of the high energy of the plume together with its high ionicity, a crystalline film is obtained.

PPD Working Principle: the ablation

Ablation process performed onto target surface, ejects a fast, dense and fully ionized plasma which spread normal to the target surface forming a film on a substrate.

Ablation forms a plasma plume

- High kinetic energy
- High electronic energy
- Any material can be deposited by the electron-matter interaction
- Almost any gas can be used as working gas *Microsecond pulse duration*
- Gaussian deposition profile
- Room temperature deposition
- No damage to plastic substrates

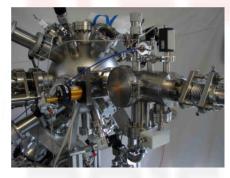

PPD advantages

- High deposition rate (up to 200 Hz)
- Composition transfer
- Scaling the area up to industrial needs
- High power efficiency

PPD GEN V Source "live in action"

PPD Technological Roadmap

- 2003 PPD Gen I @ 2 Hz, 5 nm/min
- 2004 PPD Gen II @ 10 Hz, 10 nm/min
- 2006 PPD Gen III @ 20 Hz, 20-30 nm/min
- 2009 PPD Gen III Twin Spark (one or two targets)
- 2011 PPD Gen IV @ 100 Hz, up to 200 nm/min
- 2011 PPD Gen IV Twin Spark
- 2013 Mixing material from different targets with Twin Spark
- 2006 PPD linear deposition demonstration
- 2012 PPD Gen IV PRO R&D, new focusing
- 2013 PPD GEN IV CW linear Industrial prototype module
- 2015 PPD GEN V @ 200 Hz, up to 500 nm/min

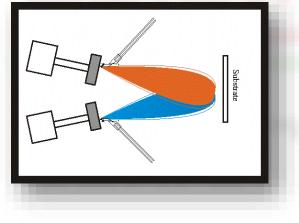


For Industrial Production

For R&D

PPD Twin Spark system for R&D

Up to 3" diameter deposition / co-deposition



2 – 3 " PPD deposition system

- 350 mm diam. UHV chamber
- Load lock (LL)
- RF cleaning in LL
- In-situ laser thickness monitor and control
- 5 % thickness homogeneity at 3 sigma

Two PPD sources

- For wider area
- For co-deposition
- For unconventional doping by plume mixing

- Control of each plume timing, intensity, temperature
- Combine the composition of complex targets material in the deposited film
- Control the relative amount of material from each target to obtain out-of-equilibrium composition of the film (such as magnetic doping, p-doping, etc)
- Control delay of the plumes arriving to the substrate

DLC based treatments

sp² and sp³ carbon bonds in diamond like carbon (DLC) films

- sp² gives rise to a planar (graphitic) network
- sp³ forms a tridimensional (diamond) network.
- sp³ / sp² and the distribution of the relative clusters produce materials with different properties.
- Hardness depends on sp³ / sp² varying from 10 to 80 GPa
- The hardest form is ta-C, i.e. tetrahedral DLC, showing an sp³ percentage above 40 80 %. (Hydrogen free.)
- Relevant characteristics for the application in mechanics are hardness, smoothness, low friction and high adhesion to the substrate

HC polymers

no films

н

Technologies for DLC surface treatments

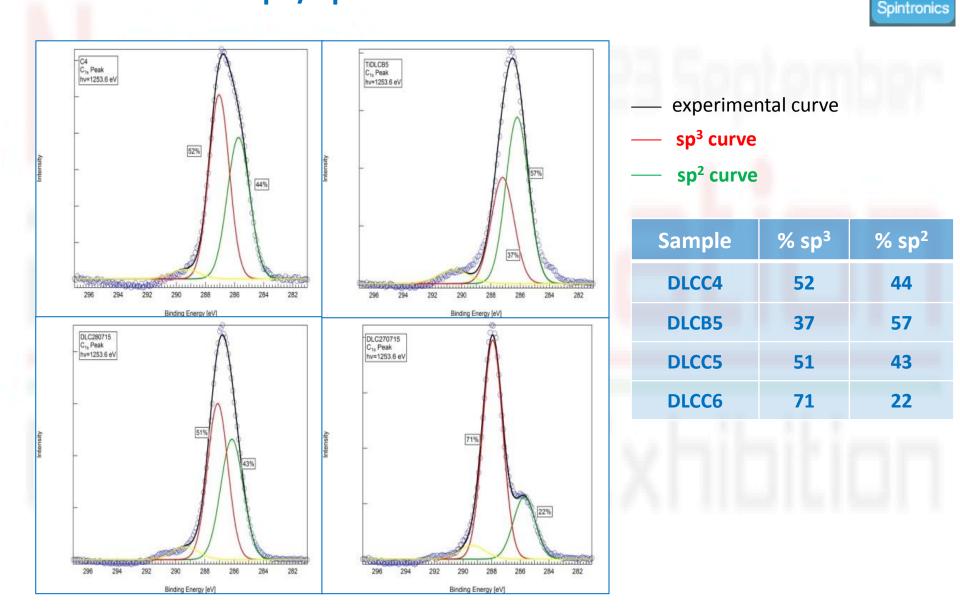
\bigcirc
Organic Spintronics

Fabrication technology	Achronim	Hardness (Gpa)	Fiction C
Hybrid sputtering and CVD	PVD/PACVD	8 - 22	0,1 -0,2
Plasma assisted chemical vapor deposition	PACVD	15-35	0,05 - 0,15
Unbalanced magnetron sputtering	PVD	20-40	0,05 - 0,1
Filtered cathodic vacuum arc deposition	FCVA	30-70	0,02 - 0,1
Pulsed laser deposition	PLD	30-80	0,02 - 0,1

DLC made by PPD: OUR RESULTS

PPD Parameters:

- Voltage
- Frequency
- Target-substrate distance
- Working Gas Pressure


Property

Characterization

- High sp³/sp² ratio XPS Results
- High hardness
- Low roughness
- High adhesion

- Nano Indentation
- AFM / SEM analysis
- Scratch Tests /SEM

PPD DLC Depositions – Property: sp³ content XPS Results : sp³ / sp² in collaboration with: CNR - ISOF

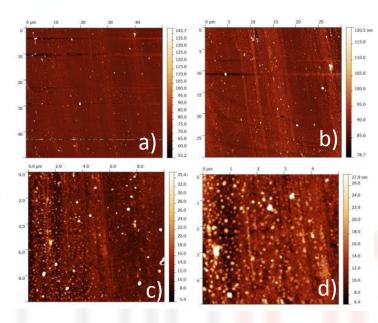
Organic

PPD DLC Depositions – Property: Hardness

Nano-Indentation Test Results: Hardness and Elastic Modulus

in collaboration with University of Modena

Sample	H (GPa)	E (GPa)
DLC09_01	21.6±2.1	292±130
DLC15_01	26.2±3.6	380±85
DLC31_01	33.8±1.8	434±110



WC polished substrates

Parametri di prova per Nano indentation test (cella da 1 mN) Carico di contatto (mN) = 0.05 Carico Finale (mN) = 1 Loading rate (mN/mm) = 2 Approach Speed (micron/min) = 2 Creep (s) = 10 Geometria dell'indenter: Berkovich Materiale dell'indenter (tip): Diamante

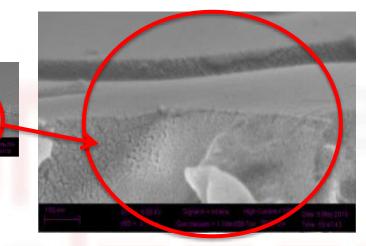
PPD DLC Depositions – Property: low friction surface

AFM Results : roughness

in collaboration with: CNR - ISMN

	Area (nmxnm)	Roughness (nm)	S D (nm)
a)	50x50	6.0	4.6
b)	30x30	4.6	3.2
c)	10x10	4.6	3.4
d)	5x5	3.6	2.2

Organic


Spintronics

SEM Results: smoothness

in collaboration with: CNR - IMM

PPD DLC Depositions – Property: adhesion to substrate

Organic Spintronics

SEM Results: adhesion layer

in collaboration with: CNR - IMM

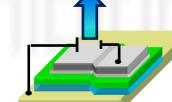
Scratch Tests: DLC film adhesion in collaboration with: University of Modena

DLC thin film was very compact: internal planes showed an extremely high adhesion between themselves. In fact only total delamination strength can be evaluated.

Sample	Delamination Force (mN)
DLC 29_01	5200 ± 350
DLC26_01	7100 ± 450
DLC14_01	9400 ± 640

Parametri di prova per Scratch Test DLC 290416^{Velocità} di Traslazione (mm/min) = 1 Velocità di Applicazione carico DLC 260416^(N/min) = 5 Carico Iniziale (mN) = 10 Carico Massimo (N) = 30 DLC 140416^{Tipologia} di Indenter : Rockwell Dimensioni della punta: 200 micron

Today Applications


Bio-compatible coating

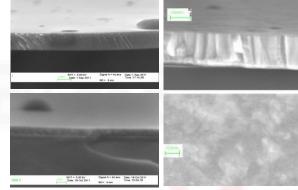
- More than 600 000 knee replacements are performed each year worldwide using a plastic spacer between two metallic parts.
- The plastic spacer provides the smooth movement and minimal wear of the articulation, it is prone to degrade in 10-15 years
- An hard coating on the plastic spacer can assure a longer lifetime
- PPD system allows to protect plastic spacer with different several biocompatible materials: TiOx; ZrOx; DLC; Phosphates

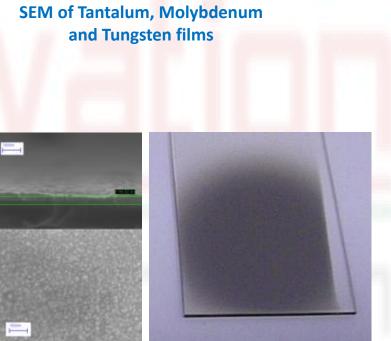
Transparent Conductive Oxide TCO

- TCO are an essential part of the display, OLED and solar panels industries.
- In₂O₃, ZnO are TCO common materials.
- PPD deposition allow to deposit on materials with an high temperature sensitivity.
- OS developed the processes for TCO fabrication for new generation of flexible plastic displays and solar cells

ZnO (TCO)

Organic Spintronics




Aluminum bottom contact

Materials and technology for tomorrow

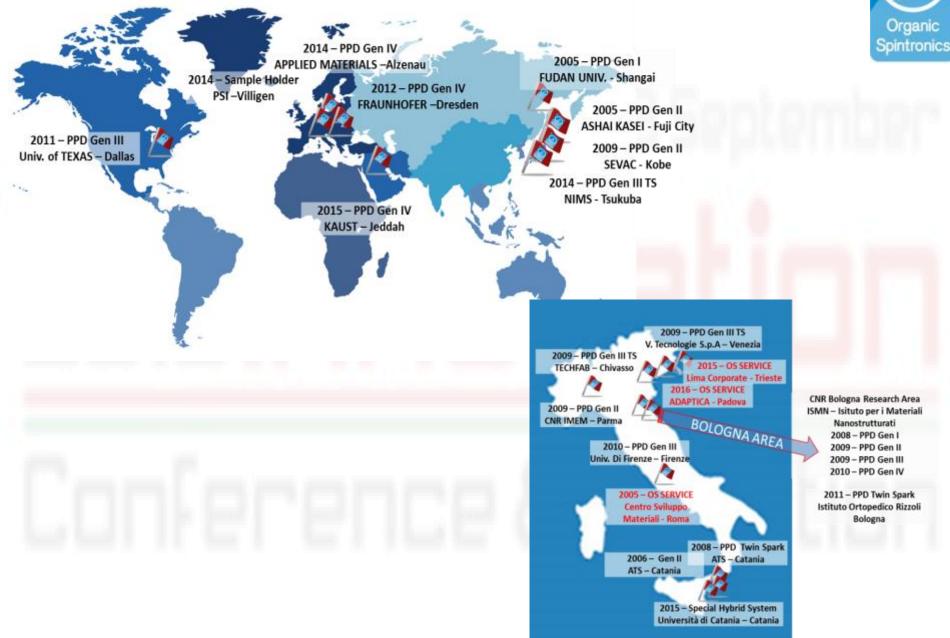
High Performance materials applications

- High melting point materials: Ta (3014°C)
 , W (3422°C), Mo (2626°C)
- ✓ Highly conductive materials: Al, Cu
- ✓ High dielectric constant and High gap materials (up to 500) : BST, GaN
- ✓ Decorative coatings: CeOx, TiOx, DLC
- ✓ Very soft materials: Teflon, Tin
- Materials and Semiconductors for Electronic Device: GaN; BST; ZnO-P; etc.
- Materials for Batteries: Compounds of Lithium and Phosphate

Images of Copper and Aluminium films

Intellectual property protection: OS's Patent Portfolio

EP 1 867 221 - Apparatus PPD Source Gen III WO2010IB00644 - PPD Source Gen IV WO2011IT00301 - PPD Source Gen IV WO2014097262 - PPD Source Gen V


ITMI20061185 – Deposition of Metal Conductive Oxide WO2007EP64158 - Transparent Conductive Oxides ITBO20100568 – High Dielectric Constant Material WO2011148251- Technology for making Solar Cells WO2011IB54182 - Bio-compatible materials

OS' PPD Installations World Wide

OS is pleased to announce a special sales promotion of its PPD Basic System equipped with one Source until December 31st 2016

Organic Spintronics S.r.l.

Thanks for your attention